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The problem of the stability of the Riemann ellipsoids of a rotating uniform self-gravitating ideal liquid is considered within the 
framework of the Lyapunov definition of the stability of the form of equilibrium (11. The regions such that almost all the ellipsoids 
belonging to it are unstable forms of equilibrium, specified in explicit analytical form, are determined in parameter spaces of 
the first and second families of Riemann ellipsoids. The proof is based on the general fact (which is formulated and justified 
separately) that, when an unstable equilibrium position of an autonomous system is stable with respect to a certain function, the 
trajectory of this system, which belongs to a certain manifold, is obtained, and also on a consequence of this fact, which has a 
constructive form. The stability of the form of ellipsoidal figures of equilibrium, with the exception of special cases of Maclaurin 
and Jacobi ellipsoids, the stability of the form of which was investigated by Lyapunov himself, has not been investigated previously 
in the literature. 6 2003 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION. FORMULATION OF THE PROBLEM. 

The problem of the existence and stability of equilibrium ellipsoids occupies a central place in the theory 
of ellipsoidal figures of equilibrium of a rotating liquid (241. 

The problem of the existence of equilibrium ellipsoids was solved by Dirichlet and Riemann [3, 41. 
Dirichlet showed [2,3] that in a class of initial conditions, which satisfy the requirements that the surface 
of the liquid should be ellipsoidal and that its velocity field should be uniformly vertical (“Dirichlet’s 
assumptions”), the initial infinite-dimensional system describing the dynamics of a uniform ideal 
incompressible self-gravitating rotating liquid, changes in a system of ordinary differential equations 
for the components of the vorticity (2w,(t), 2w2(t), 2w3(t)), the semi-axes of the ellipsoid (a, b, c) and 
the components of the angular velocity (p, q, r) in a moving frame of reference. 

We will present this system of ordinary differential equations in a form which will be most convenient 
later (obtained from the initial system [2] taking into account the condition for the liquid volume to 
be constant, which is a consequence of the equation of incompressibility: abc = const, where we can 
assume that const = 1 without loss of generality). 

We have 

~(AtP+A2o,)+q(Ctr+C2~3)-~~q+~~2)=0 (pqr, ~ta203, ABC) (1.1) 

2a(c2 - b2) 

+ (a2 + c2)(a2 + b2) a203 
=0 (123, abc, pqr) 

-(P-&,)a2 
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where 

tS~ 

4(a 2 -c2)e 2 
- (a 2+c 2)2 qta2 

(xyz, abc, pqr) 
M(b 2 - c  2)2 4M b2c 2 

Al 5 b 2+c 2 ' A2 5 b 2+c 2 

P=2[~aH(a,b,c) ] (PQR, abc) 

/~= 3M~ ark 
4 0 ~ '  ~0(~,) = (a 2 + ~,)(b 2 + ~,)(c 2 + ~.) 

a 2 _ c  2 a 2 _ b  2 
= - -  _ ta x = (a 2 + 3c2)q 2 (a 2 + 3b2)r 2 

a (a 2 +c2)  2 + (a 2 +b2)  2 - 

4a2c 2 4 ( a 2 - b 2 )  b2 4a2b2 0)2 + ta~ 
(a 2+b2)  2 r t a3+(a  2+b2)  2 (a 2+c2 )  2 

(ABC, abc) 

(1.5) 

(1.6) 

and M is the mass of the liquid. 
Here and everywhere henceforth we will assume c = 1/(ab) in all the formulae. 
If we take into account Dirichlet's conditions and the known form of the solution of Laplace's equation, 

Eqs (1.2) of system (1.1)-(1.4) follow from Helmholtz' equations for a vortex in moving axes, Eqs (1.1) 
follow from the theorem of angular momentum, and Eqs (1.3) and (1.4) follow from Euler's hydro- 
dynamic equations in moving axes [2]. 

System (1.1)--(1.4) has three integrals: energy, angular momentum and constancy of the vorticity [2] 

I ( A  t p2 + Biq2 + Cir 2 + A2ta 2 + B2ta22 + C2ta32) + W + ~00 (h2 +/~2 + k2) = const (1.7) 

(AI p + A2ta I )2 + (/~ q + B2ta 2 )2 + (C I p + (?20) 3)2 = const (1.8) 

(tal / a) 2 + (0)2 / b) 2 + (ta3 / c) 2 = const (1.9) 

where 

W= 2'3 M2[ ark 
- 5 . 4  " 

(1.10) 

Riemann, on the basis of Dirichlet's investigations, determined [3, 4] the set of all equilibrium positions 
of system (1.1)-(1.4), to each of which there corresponds a certain steady motion of the mechanical 
system considered - the Riemann equilibrium ellipsoid. 

Riemann showed [3] that this set is a combination of two "subsets": in ellipsoids of the first subset 
the angular velocity vector and the vorticity vector of the internal motions lie in one of the principal 
planes of the ellipsoid, and for the ellipsoids of the second subset these vectors are collinear and are 
directed along one of the axes [3]. 

Considering now the problem of the stability of the equilibrium ellipsoids, it is first necessary to note 
the fact that the formulation of this problem itself, like any other problem on systems with an infinite 
number of degrees of freedom, is non-unique. Two approaches to the consideration of the stability of 
the equilibrium ellipsoids are known in the classical literature, in addition to Poincar6's approach, that 
are close to the hydrodynamic method, which is not considered here. 

In the first of these - Riemann's approach - the perturbation is assumed to satisfy Dirichlet's 
conditions, and the stability is determined in a natural way as the usual stability of the corresponding 
equilibrium position of system (1.1)-(1.4) [2, 3] (i.e. Lyapunov stability for systems with a finite number 
of degrees of freedom). 

The second approach- Lyapunov's approach - assumes that the nature of the perturbation is, generally 
speaking, arbitrary. Stability here is understood as the stability of the form of equilibrium in accordance 
with the definition given by Lyapunov in his Master's Dissertation [1]: If for each sufficiently small number 
e > 0 we obtain a number 5 > 0 such that for any perturbation, for which at the initial instant of time 
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Iv(r)-vo(r)],=o <8, ] ~ - ~ o  1<8, 11,=0<8 and Vl,=0>V~.(/],=0) (1.11) 

the condition l(t) < e will hold, at least so long as the relation V(t) > Vmin(/(t)) is satisfied, then the 
steady motion corresponding to this equilibrium figure is stable. 

Here o(r) is the velocity field of internal motions, and g2 -- (p, q, r) is the angular velocity of the 
ellipsoid in moving axes (the subscript 0 denotes the corresponding parameters for the equilibrium 
figure); the quantity l, introduced by Lyapunov and which he called [1] the distance of the perturbed 
surface of the liquid S from the unperturbed surface So, is defined as 

l= max(minp(P ,  Po)) 
PO ~SO k. P¢S 

V is a quantity, which Lyapunov called the deviation, that corresponds to the volume of the part of the 
liquid in the perturbed configuration, bounded by the surfaces S and So and situated above the surface 
So, and Vmin is a function of the distance l, which defines the minimum possible value of V for the given 
value of l, which is possible for an actual liquid. 

The method Lyapunov used to solve the problem was based on proofs that the functional of the 
changed potential energy in the steady rotation considered reaches a strict minimum [1]. Hence, he 
investigated the stability of the Maclaurin and Jacobi ellipsoids (Lyapunov apparently did not consider 
other equilibrium ellipsoids). 

Lyapunov's method involves analysing that the sufficient condition for the stability of the form he 
formulated is satisfied. Unfortunately, from the technical (computational) point of view, the use of this 
method involves considerable difficulties. Moreover, when investigating Jacobi ellipsoids, Lyapunov, 
as is well known [1], only succeeded in proving the stability of the form with respect to a very "small" 
part of them (namely, those whose eccentricities lay in certain narrow limits). And, bearing in mind 
the fact that the Jacobi ellipsoids are the "simplest" special cases of Riemann ellipsoids, this implies 
that it will be extremely difficult, if generally possible, to obtain any results on the stability in respect 
of the general case of Riemann ellipsoids in this way. In this connection the question arises of whether 
it is possible to approach this solution of the stability problem from another angle, namely, by analysing 
whether (some) sufficient instability condition is satisfied rather than the sufficient stability condition. 

In this paper we show that this approach does in fact enable one, generally speaking, to reach 
conclusions on the nature of the stability, in the sense of the Lyapunov definition (1.11), (to prove 
instability) of a considerable part (if not the major part, in the sense of the usual measure) of the Riemann 
ellipsoids. 

It can be shown (see Section 2 below), that the conditional stability of form (in the class of 
perturbations which satisfy Dirichlet's conditions) in the sense of Lyapunov's definition (1.11) is 
equivalent to the partial stability of the equilibrium position of system (1.1)-(1.4), corresponding to 
the Riemann ellipsoid considered, with respect to part of the phase variables - the semi-axes (a, b) of 
system (1.1)-(1.4). 

Hence, the definition of the set of equilibrium positions of system (1.1)-(1.4), which are unstable 
with respect to (a, b), automatically defines a set of Riemann ellipsoids, which are unstable forms of 
equilibrium in the class of perturbations that satisfy Dirichlet's conditions and, of course, the set of 
Riemann ellipsoids that are certainly unstable in the sense of Lyapunov's definition (1.11). 

2. THE EQUIVALENCE OF THE CONDITIONAL STABILITY OF 
FORM AND OF THE STABILITY WITH RESPECT TO 

THE VARIABLES (a, b) 

Consider the conditional stability of form - that property into which the property of stability of form 
of the Riemann ellipsoid transfers in the sense of the Lyapunov definition (1.11), given in [1], provided 
that the perturbations satisfy Dirichlet's assumptions. 

In this case the whole time of motion of the liquid surface will be represented by the surface of an 
ellipsoid with semi-axes a(t), b(t) and c(t). 

Starting from this we will determine here the value of the distance l, distance by Lyapunov [1]. 
In the space R 3 we will change to dimensionless elliptic coordinates (r, q~, 0) 

x = ra o sin q~ sin 6, y=rb0cosq~sin6,  z = rco cos e 
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Then r = 1 is the equation of the unperturbed surface of the equilibrium ellipsoid, and q) and 0 are 
coordinates on this surface. 

The equation of the perturbed surface in these coordinates is 

r(/,9,0)= sin2~°sin20+ b'(t)bd cos2qosin20+c~t)cos20 

In the coordinates considered we will define the value T of the "dimensionless" distance, corresponding 
to the value l. From Lyapunov's definition we have 

~ L(a(t), b(t), c(t)) = max I r(t, q}, 0 ) -  1 I 
~,0 

(2.1) 

since the distance from any point of the surface of the unperturbed ellipse with coordinates (q0, 0) to 
the point of the surface of the perturbed ellipsoid closest to it is certainly no greater than Ir(% 0) - 1 I. 

In is clear that the value of the quantity L(a(t), b(t), c(t)) corresponds to the value of the function 
r(t, q0, 0) for those values of q0 and 0 for which the function 

2 2 2 
1 = ~ s i n 2 t p s i n 2 0 +  b~ cos2~sin20+ c 6 COS20 

r 2(t,~,O) a (t) b'( t)  c '( t)  (2.2) 

takes an extremum value (with respect to q0 and 0). Differentiating function (2.2) with respect to q0 and 
0, we conclude that both derivatives will be zero only in each of six possible cases: 

1) ~0 = 0 , 0  =~t/2,2)~0 = 0, bg/b2( t )=c~/c2( t ) ,  3) q} =n/2 ,  0 =n/2,  4) ~0 =0 ,  

a~ la2(t)= cg Ic2(t), 5) 0 = 0, 6) 0 = n/2, a g la2(t) = b 2 Ib2(t). 

From the values function (2.2), in each of these cases we obtain 

l(t) <~ g, ~t = max{(a( t ) -ao) l  a o, (b( t ) -bo) l  bo, (c ( t ) -co) l  co} (2.3) 

On the other hand, for points of the unperturbed surface lying on the semi-axes a0, b0 and Co (cases 
3, 1 and 5), the distance to the points of the perturbed surface closest to it is equal to (a(t) - ao)/ao, 
(b(t) - bo)/bo and (c(t) - Co)/Co, respectively. 

l(t) 1> p. 

Hence, taking inequality (2.3) into account, we have 

l'(t) = p. 

It is obvious, further, that for any specified point M' of the perturbed surface the definition of the 
point M1 = MI(M') of the unperturbed surface is such that 

p(M I, M') = min p(M, M') 
M 

is independent of the choice of the system of coordinates. In exactly the same way, the definition of 
the point 5//2 of the perturbed surface, for which 

p(M 1 (M 2), M2) = max p(M1 (M'), M') 
M' 

is also independent of it. From this, and taking into account the definition of the distance l, we have 
that the two points M2 on the perturbed surface and MI(M2) on the unperturbed surface, the distance 
between which defines the value of l, are independent of the choice of the system of coordinates (although 
this value itself will, generally speaking, change on changing from one system of coordinates to another, 
if distance is not preserved during this transition). Taking the above discussion into account, we obtain 
that in the initial Cartesian coordinates (x, y, z) 
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l( t)=max{la(t)-ao l, Ib(t)-bo I, Ic(t)-co l} (2.4) 

(This obvious fact also be proved differently.) 
Further, it can be seen from the expressions for the derivatives of the function r(t, ~, 0) with respect 

to t# and 0, that 

Idr(t;~p,O)/ dtpl< M Idr(t;%O)/ dOl< M, Vt, q~,O 

where 

M = 3max(a2,bg,c2)l[min(a,b,c)] 5 < 3max(ag,bg,cg)/[(1-])min(ao,bo,co)] ~ = 

= M°(ao,bo,co,1) 

Hence the derivatives dr~d% dr~de for any t, (p and 0 are bounded in modulus by the constant 
M*(ao, bo, Co, -{). 

It immediately follows from this that part of the perturbed liquid, which is below the unperturbed 
surface, comprises a cone K(l, a0, b0, Co) of height l and the base of which is a circle of radius 

p = p(/) = sin(1 / M*)l"/(i + 1 - cos(l" / g*))  

We then obtain that a function V*mi,(]') exists, equal to the volume of the cone K(l, a0, b0, Co), and 
such that 

V(t) > V~.,(l(t)), Vt ~< 0 (2.5) 

The condition corresponding to condition (2.5) will obviously also be satisfied in the initial coordinates 
(x,y,z). 

Further, taking expression (2.4) into account, we obtain, from the expressions for the components 
of the velocity field of the internal motions of the liquid for the case when the initial conditions satisfy 
Dirichlet's assumptions [2], that for each number 8 > 0 a number 8 > 0 is obtained such that from the 
conditions 

it follows that 

lArval<S, 1<5 

IzXo ,l< , IzXPl< , IzXql< lArl< , IA I< , I cl<  (2.6) 

where toi, P, q, r, a, b are the phase variables of system (1.1)-(1.4), which describe the dynamics of the 
liquid Dirichlet ellipsoid, Ato/ = to/- t0;0, etc. On the other hand, since the velocity field in the case 
when. the initial conditions satisfy Dirichlet's assumptions depends continuously on x = (%, p, q, r, a, 
b, h, b), we have that, for each number 8 > 0 a number 81(8) > 0 is obtained such that the condition 
Ix-x01 > 81 implies the condition [AVrel[ < 8. 

Hence, and also taking into account expression (2.4) and the fact that, from the condition Ix -x0l 
< 81 it automatically follows that 

1 l<Sj, ILXql<8 , IArl<St; IZXaI<8 , 1 1<8,, 1 1<81 

we obtain that for each number 8 > 0 a number 62 = min(6; 61(8)) > 0 is obtained (81(8) is defined 
above), such that the condition [x -xo[ < 82 yields the following inequality. 

IAvte l<8; Itaal<8, l<8  (2.7) 

As a result we conclude that when the initial conditions satisfy Dirichlet's assumptions: 
(1) the condition V > Vrnin(l(t)) can be omitted in definition (1.11), since it is automatically satisfied 

by virtue of inequality (2.5); 
(2) the conditions 

IAv(t=0)l<~i,  laf2( /=0) l<8,  / ( t=0 )<8  
tel 



990 N.B. Grigor'yeva 

in definition (1.11) are equivalent to the condition [x(t  = 0) -x01 < 8, by virtue of conditions (2.7) and 
(2.8); 

(3) the conditions l ( t)  < s in definition (1.11) is equivalent to the condition Aa < e, Ab < e, Ac < e 
by virtue of expression (2.4). 

Hence, recalling that c = 1/(ab),  property (1.11) in this case is equivalent to the stability of the ellipsoid 
z0 as an equilibrium position f system (1.1)-(1.4) with respect to the functions a and b in Lyapunov's 
sense, which it was required to prove. 

Hence, the question naturally arises here regarding the stability of the Riemann ellipsoids as equili- 
brium positions of system (1.1)-(1.4) with respect to part (a, b) of the variables of system (1.1)-(1.4). 

Before considering this specific question, it is worth dwelling on some general facts. 

3. REMARKS ON THE P R O B L E M  OF THE STABILITY WITH R E SPE C T  
TO A PART OF THE VARIABLES 

Lyapunov [1] first formulated the problem of stability with respect to a part of the variables. 
However, this problem was not investigated until much later, after more than half a century, by 

Rumyantsev and his successors (see the bibliography in [5]). 
In these papers the basic principles of the method of solving the problem of stability with respect to 

a part of the variables were developed, founded on Lyapunov's ideas. The analysis carried out in these 
investigations of both Lyapunov's theorem itself and the majority of the other theorems of the method 
of Lyapunov functions showed that assertions close to them also held and were applicable to the problem 
of stability with respect to a part of the variables. 

General theorems, which gave the sufficient conditions for stability, instability, asymptotic stability, 
uniform asymptotic stability, and asymptotic stability as a whole, with respect to a part of the variables, 
were formulated in [5], modifications of these theorems were considered, and the problem of their 
invertibility were investigated. Rumyantsev was the first to introduce into the literature the idea of the 
positive definiteness of a function with respect to a part of the variables and to determine the property 
of the infinitesimal upper limit with respect to a part of the variables. 

The majority of the theorems of Rumyantsev's method of the problem of stability with respect to a 
part of the variables are of universal form and are applicable in the majority of cases of non-autonomous 
dynamical systems. 

Their use does not require a knowledge of any a priori information of the properties of the system 
considered in each specific case. But in certain cases the presence of such information can facilitate a 
solution of the problem, constructed using theorems of general form. 

Below we will show that it is precisely this situation that occurs when solving the problem of the stability 
of the equilibrium positions of system (1.1)-(1.4) with respect to the variables (a, b), to which the initial 
problem can be reduced (see Sections 1 and 2), that is the object of the present paper. In this case, on 
the basis of an analysis of Rumyantsev's theorem on stability with respect to a part of the variables, we 
can formulate an addition to this theorem, which represents a certain development of it for a particular 
class of system to which system (1.1)-(1.4) belongs. This also enables us (see below) to reach certain 
conclusions regarding the stability of the equilibrium positions of the system considered with respect 
to the variables (a, b). 

System (1.1)-(1.4) is autonomous. Moreover, in the phase space of this system it turns out to be 
possible to determine in analytical from [7] regions such that almost all the equilibrium positions of 
system (1.1)-(1.4) pertaining to them are Lyapunov unstable. Following the approach employed here 
to solving the initial problem (see Section 1) we will further consider the stability of these equilibrium 
positions of system (1.1)-(1.4) with respect to (a, b). 

We will first consider the general case of the autonomous system 

k =  v(x),x~ Rn;oi(x0)=0, i =  1 . . . .  , n  (3.1) 

with Lyapunov unstable equilibrium positions x = x0 = 0. Suppose it is required to the determine the 
nature of the stability x0 with respect to the variables y = (xl  . . . . .  Xk), k < n,  (x = (xl  . . .  Xn) = (Y, z); 
Z = ( Z  1 . . .  Zn_k) ~- ( X k +  1 . . .  Xn) ). 

Rumyantsev's theorem on stability with respect to a part of the variables [5, 6], which henceforth, 
for brevity, we will refer to as the "theorem of y-stability", allows of inversion for a class of dynamical 
systems of fairly general form [5]. If some system of the form (3.1) belongs to this class and if the 
y-positive-definite function V(t ,  x) ,  which satisfies the conditions of the theorem on y-stability for this 
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system (3.1), allows of an infinitesimal upper limit with respect toy, then [5] the set {x: y = 0} is stable, 
and necessarily invariant for system (3.1) considered. 

Hence, the question naturally arises here as to what extent, for systems of the form (3.1), it is possible 
to satisfy simultaneously the following two properties: y-stability and invariance of the set {x: y = 0}. 
A consideration shows that wheny-stability occurs, the set M, even if it is not invariant, i.e. completely 
filled with trajectories of  system (3.1), at all events contains the whole the separate trajectories having 
points in as small a neighbourhood of x0 as desired. The corresponding assumption, which can be 
formulated in this connection, can be extended to several more general cases. Suppose it is required 
to determine the stability of x0 with respect to the set of functions fl(x), . . . ,  fk(x), which are arbitrary 
in the sense that the existence of the diffeomorphism x ~ (fl(x),... ,fk(x), Zl(X) ... Zn-k(X)) is not assumed 
here. 

Proposition 1. Suppose x0 is an unstable equilibrium position of the system k = o(x), x 6 R n (3.1). 
Then if the equilibrium Xo is stable with respect to the functions fi(x) ~ C(Rn)(i = 1 . . . . .  k, k, < n), 
then for any sufficiently small e > 0 a trajectory of system (3.1) is obtained, a certain section of which 
belongs to the set 

{x: f / (x)=f/(xo),  i=1  ..... k; P(x0,x)<lz} 

Note that in the hyperbolic case this fact follows trivially from the theorem of the topological equi- 
valence to a standard multidimensional saddle (the existence of outgoing and incoming "whiskers"). 
But this also occurs in the general case when the equilibrium position is unstable. 

Proof. Without loss of generality we can assume that x0 = 0 and fi(x0) = )~(0) = 0. 
We have from the definition of instability that a certain number c~ > 0 exists such that for any number 

6 > 0 a point x8 and an instant of time t(8) > 0 are obtained such that IIxsII, but 

II g' 8 (x6)II = cx (3.2)  

where gt(x) is a trajectory of system (3.1) with initial condition gt=°(x) = x. 
We will now consider a certain strictly decreasing sequence {Sn} ~ 0. Then, for any number 8 > 0 

a number N = N(8) is obtained, which is determined starting from the condition 8 > 8N(SN ~ {Sn}), 
such that each of the trajectories gt(x~,) when n = N(8)  emerges, at the instant t = 0. from the point 
(x~,), belonging to the 8-neighbourhood of zero. Suppose we now specify a certain sufficiently small 
positive number e < ct. Each trajectory gt(x~) for n > N(8 = e/4) emerges, at the instant t = 0, from 
the (e/4)-neighbourhood of zero and, at the instant t(8,), intersects the sphere 9(x, x0) = IIx II = ~ and 
therefore an instant t(Sn) < (0 < t(8,) < t(Sn)) exists at which this trajectory also intersects the sphere 
I lxll -- e/2; we win denote the points of intersection byxn (if the point of intersection of the trajectory 

g~(~)(x~,) with the sphere Ilxll -- E/2 is not unique, we can take as x~ any of these points, for example, 
the one at which the trajectory g~(~)(x~), emerging at the instant t = 0 from point x~,, intersects the 
sphere  IIx II = E/2 the first time. 

) = x . ;  II x .  II = / 2 

We will now consider the sequence {xn} (n > N(8 = E/4)). Note that here each of the following two 
possible versions must be considered separately: 

(1) an infinite number of different points n in the sequence {xn}. 
(2) a finite number of different points in the sequence {.~} such that at least one of them say, x*, 

has infinite by many "numbers": x* = xnl ~. Xn2 = . . . .  
However, it is easy to see that the proof presented below for the first of these two versions, is also 

suitable for the case when the second version occurs, so that it makes no sense to consider the latter 
separately here. 

Since the sphere is a compactum in R n, we can choose from the infinite sequence {x~} of points on 
the sphere Ilxll -- e/2 a converging subsequence {.~m} (a function n(m) exists: N ~ N: -rm = Xn(m), 
Vm), which converges to a point x* of this sphere: { X m } m - - - ~  "-fiX*, IIx~ll-- e/2. 

We will consider the trajectory of system (3.1) passing through the point x*, and show that the whole 
of this trajectory belongs to the surface 

f/(x) = f/(xo) = O, i = 1 ..... k 
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We will first assume that a number i(1 ~< i ~< k) is obtained such thatj~(x~) ~ 0; suppose, without loss 
of generality, thatj~(x~) = 213 > 0. 

We then have, from the continuity of the functions )~(x), that a number 1(13) is obtained such that 
IIx-x~l[ < l ~  If,.(x)-f,(x*)l = If,(x)-2131 < 13, i.e.h(x) > 13. 

It follows from the convergence {Xm } ~ x~ that a number M1 is obtained such that I1~ -x*l l  < 1(13), 
Vm > M 1. Therefore 

f(xm) > 13, Vm > M l (3.3) 

We will now specify a certain arbitrary number 6 > 0, as small as desired. We will define the number 
M2: n(M2) > N(8), where the functions n(m) and N(6) are defined above• 

Suppose M = max(M1, M2). We then obtain, taking the above and inequality (3.3) into account, that 
any of the trajectoriesgt(x~, ~ ), m > M, emerges at the instant t = 0 form the point (x~, m ), lying in the 

• ( )  . . . . .  . ( )  
6-nelghbourhood of zero, and at certain instant ('lT(~n(m))) IS mcldent on the pomt (namely, on 
Xn(m) = xm), at which the value of the function~(x) is greater than a certain fixed number [3 > 0. This 
indicates that the zero equilibrium position of system (3.1) is unstable with respect to the function 
)~(x), which contradicts the condition• Consequently, our assumption is untrue and fi(x*) = 0 for each 
i = 1  . . . . .  k. 

We will now assume that, for a certain number T > 0, a number i is obtained such that 
~(gr(x~)) ~ 0; suppose (without loss of generality)f(gr(x*)) = 213, 13 > 0. By virtue of the continuity of 
the function~ a number la = la(13) exists such that 

II x -  g r ( x~ ) ll < l I =~1 r * f a x ) -  f a g  (x~))] < 13 ~ y~(x) > 13 (3.4) 

By virtue of the theorem of the continuous dependence of the solutions of differential equations on 
the initial conditions, we conclude that a number 12 = 12(11(13)) = 12([3) is obtained such that 

II x - x :  II < 12 =11 gr(x), gr(x~)II < t, (3.5) 

We obtain from the convergence {Xm} ~ x~ in turn that a number M3 exists such that 

II x~ - ~m II < 6(13), Vm > M3 (3.6) 

Hence, by virtue of (3.4)-(3.6) we have: )~(gT(~'m) ) > [3 Vm > M 3. Suppose now M4 = max(M3 g), where 
M2 = M2(6) is defined above. Then, for each 6 > 0 as small as desired, any of the trajectories-gT(XSn(m) ), 
m > 3/4, emerges at the instant t = 0 from the point (xs,,,), lying in the 6-neighbourhood of the 

• ( )  
equilibrium positionx0 = 0, and is a certain instant (t = x(6n(m) + T)) is incident on the point (namely, 
on the point gr(xn(m) ) = gr(~m)), at which the value of the function j~(x) is greater than a certain fixed 
number 13 > 0. The latter indicates that the equilibrium x0 = 0 is unstable with respect to the function 
J~, which contradicts the assumption• 

Hence, the assumption is untrue and 

f~(gr(x~))=0, VT>O i = 1  . . . . .  k 

Similarly)~(gr(x*)) '= 0 for negative T also. As a result we obtain that any trajectory gt(x*) belongs to 
the set of level 

{x: f / (x )=f / (x0)=0 ,  i=1 ..... k} 

Since the point x~ lies in the e-neighbourhood of the point x0 = 0 (11 (x~ll = e/2, see above), a certain 
section of the trajectory gt(x~) also lies in this neighbourhood. Hence, for any sufficiently small e > 0 
specified in advance a trajectory of system (3.1) exists which belongs to the set 

{x : f,.(x) = fi(x0), i = 1 ..... k; p(x,x 0) < e} 

which proves Proposition 1. 
Note that in the case when the sequence {x,} consists of a finite number of points, so that one of 

them, say, x*, has infinitely many "number" x~ = xnl = X~a . . . .  ({nk} ~ oo), the trajectory gt(x~) 
approaches infinitesimally close to the point x0 = 0 as t --~ --o% and hence the proof is simplified here: 
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the fact that all the functionsl}(x) vanish at points of  this trajectory gt(x~) immediately follows from the 
definition of the stability of equilibrium position x0 with respect to the functions )](x) (i = 1, . . . ,  k). 

Suppose now that the functionsj~(x) are of the class C m, m I> 1 or are analytic; dq')f(u) is thepth  Lie 
derivative with respect to time of the function f, by virtue of the equations of motion (3.1). 

Corollary 1. If the unstable equilibrium position x 0 = 0 of system (3.1), t~(x) ~ cm-l(Rn)(j  = 1 . . . . .  n; 
m I> 1) is stable with respect to each of the functions fl(x), . . . ,fk(x),fi ~ C~(R~), then for each e > 0 
as small as desired in R n a curve exists, all the points of which satisfy the algebraic system 

dPfi (x) ldt  p = dPfi(v )(x) = 0, p = 0,1 ..... m; i = 1 ..... k (3.7) 

and such that a certain section of this curve lies in the e-neighbourhood of the point x0 = 0. 
Corollary I in fact immediately follows from Proposition 1. 
The trajectory gt(x*~), defined in the proof  of Proposition 1, belongs to the set {x: fi(x) = 0}. Suppose 

at a certain point ~1 of the trajectory we have gt(x~)dfi(u)(~l) = (Vf,., u) (xl) = c > 0. Then, from the 
continuity in a certain ~/-neighbourhood of the point x'l on the trajectorygt(x*~) we have dfi(u)(x) > c/2, 
[Ix - x l  [[ < ~'. Suppose "c is the time, after which the trajectory, emerging from the point ~1, is incident 
on the point E2 = gt(x*~) N {x: Ilx -x l l [  < Y}. We have 

t c c 
~(~2) = ~(~,)+ J d~(v ) (g ' (~))at  > ~ ( ~ ) + ~ , c  = - ,c ( ~ ( ~ )  = o) 

o 2 

Hence, fi(.~2) ¢ 0. We have obtained a contradiction; consequently, all the points of the trajectory gt(x~) 
belong to the set {x: dfi(u)(x) = 0 (for each i = 1 . . . . .  k)}. Proceeding in exactly the same way for the 
function]~0)(x) = dfi(u)(x) we obtain that all the points of the trajectory gt(x*) belong to the set 

{x : df/I)(u)(x) = d(2) f i ( u ) ( x )  = O, i = 1 ..... k} 

etc. 
As a result we have that all the points of the trajectory gt(x~) satisfy system (3.7). Further, the point 

x~ lies inside the e-neighbourhood of zero (IIx* II = e/2, see above), so that a certain section of the 
trajectory g'(x*) also belongs to this neighbourhood. This also proves Corollary 1. 

Hence, a certain development of the theorem on y-stability [5] gives the necessary conditions for this 
stability. However, these conditions are only applicable to autonomous systems and only in the case 
when the Lyapunov instability of the equilibrium position is known in addition, whereas the theorem of 
y-stability is applicable in the general case of non-autonomous systems (see Section 3), regardless of  
whether the nature of the Lyapunov stability of their equilibrium positions is known in advance or not. 

Proposition 2. Suppose, in a certain neighbourhood of the point x0 = 0, which is a Lyapunov-unstable 
equilibrium position of system (3.1), oj(x) ~ c m - I ( R n ) , j  = 1 . . . . .  n ;  m t> 1, the algebraic system 

dpf i  /dtP =d~P)fi(v)(x)=O, p = 0  ..... m, i=1 ..... k, k <n 

where )] ~ C'(Rn),  has a unique solution. Then equilibrium position x0 is unstable with respect to the 
set of functions fl(x) . . . . .  fk(x). 

In fact, the assertion formulated in Proposition 2, is a direct consequence of Corollary 1. Note that 
the conditions of Proposition 1 are constructive. Then, when the condition of Proposition 2 is satisfied, 
they are not necessarily satisfied (whence it immediately follows that x0 is unstable with respect to the 
function f ) .  But these conditions may not be satisfied, obviously, when the condition of Proposition 2 
is not satisfied. However, the latter turns out, formally speaking, to be satisfied "almost always", if 
m / >  n, in connection with which we can here make the following remark: For any dynamical system 
(3.1), oj(x) ~ Cn-I(Rn),j = 1 . . . . .  n, of "general position" with a Lyapunov-unstable equilibrium position 
x0 = 0, in the general case of an arbitrary function of the phase variables f(x) C C~(R n) (f(0) = 0), 
instability of the equilibrium position x 0 with respect to the function fwil l  also occur. 

In fact, it is easy to show that in the general case of an arbitrary funct ionf  of the phase variables of 
system (3.1), the Jacobian 

det D(ft°)'fO)(x)"---~'"f~n-1)(x)).l ~ 0 

I t~x) I10 o 
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(k) def 
wheref  (x) = dkf(x)/dt ~ from the left-hand side of the kth equation of system (3.7). 

Hence, taking Proposition 2 into account, we immediately obtain the assertion formulated in the 
remark. 

Proposition 2 is the sufficient condition for partial instability for autonomous systems with Lyapunov- 
unstable equilibrium positions. It is easy too show that, in the autonomous case, when the conditions 
of Rumyantsev's theorem on y-instability are satisfied (y = (Yl . . . . .  y,), s < n) [5, 6], the conditions of 
Proposition 2 will also be satisfied if the function V(t, y), which satisfies the y-instability theorem, is 
explicitly independent of t. 

In fact, in this case the conditions of Proposition 2 are also satisfied for k = 1, m = 1 and for the 
functionfl(x) = f(x) = 17"(y), where V'(y) is any function, identical with the function V(y) in the region 
/3 C R~y), ifD is the region V(y) > 0, which occurs in they-instability theorem, and of a certain positive 
function of the class CI(R~y~), continued into the region B~0\D (e0 > 0), preserving the derivative on 
the boundary OD. And from the instability of the equilibrium positionx0 with respect to a certain function 
V(y) it also follows that it is unstable with respect to the set of variables {y}. 

However, if the function V(t, y), which satisfies the y-instability theorem, depends explicitly on t, this 
does not imply any conclusions regarding the satisfaction of the conditions of Proposition 2. Note also 
that in order to be able to use Proposition 2 in each specific case it is necessary, in addition, to have 
available information on the Lyapunov instability of the equilibrium position, whereas the y-instability 
theorem automatically gives the sufficient conditions for Lyapunov instability, in addition to the sufficient 
conditions for y-instability (as it should do). 

In the problem of stability with respect to a part of the variables (a, b) of the equilibrium positions 
of system (1.1)-(1.4), corresponding to the Riemann ellipsoids, the situation of a general position also 
arises, with which we shall deal in the next observation. We will show this. 

4. THE STABILITY OF RIEMANN ELLIPSOIDS IN 
THE SENSE OF LYAPUNOV'S D E F I N I T I O N  (1.11) 

We will consider the problem of the partial stability with respect to the variables a and b of the equili- 
brium positions of system (1.1)-(1.4), corresponding to Riemann ellipsoids. 

It was shown earlier [7], that system (1.1)-(1.4) can be reduced [7] by the diffeomorphism 

(a,b,a,b, p,q,r,  tol,to2,t %) --~ {z} = {a,b, pta),p(b);Gi,G2,G3,11,12,13} (4.1) 

specified by the relations 

G l = (M / 5)((b 2 - c 2)2)/(b 2 + c 2))p + (4M / 5X(b2c 2)/(b 2 + c 2))tO I 

l l = .-(2MI5)bcto ! (123, abc) 

po = (M / 5) (ti(l + I I(a4b 2)) + b I(a3b 3)) 

P(b) = (M 15)(/~(1 + 11(a2b 4) + h I(aab 3)) 

to a system of Hamiltonian form 

~ = {z, HI 

Here H(z) is the energy (1.7), expressed in {z} coordinates (4.1) 

where 

(123, abc, pqr) 

H = ff£ Ic=l/(at,) + 5 ( 2 M )  -I ( a4b4 (P~a) + P~b)) + (aP(a) - bP(b))2 )(a4b 4 + a 2 + b 2 )-l 

~ ( Z )  = 5 ( 2 M )  -I [(b 2 + c 2)(b 2 - c 2)-2 {72 + (a  2 + c 2) (a  2 _ c 2)-2 G 2 + 

+ (a  2 + b 2 ) (a  2 - b 2 ) -2G2 + 4 b c ( b  2 - c 2 ) - 2 G l l l  + 4 a c ( a  2 - c2) -2  G2/2 + 

+ 4 a b ( a  2 _ b 2 )-2 G315 + (b 2 + c 2 )(b2 _ c2)-2/12 + (a 2 + c 2 Xa  2 - c 2) -2 /~  + 

+ ( a  2 + b 2 X a  2 - b 2 ) - 2 / ~ ] +  W 

(4.2) 

(4.3) 

(4.4) 
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In Eq. (4.2) {,} is the Poisson bracket in the space of functions C=(Z), specified as follows: 

{Gi,Gj} = ekjiGk, {li,lj} = Ckiilk, {a, Pt0)} = {b, P(b)] = 1 (4.5) 

and the Poisson brackets between all the remaining pairs of phase variables are identically equal zero. 
Everywhere henceforth we will consider system (1.1)-(1.4) in {z} coordinates (4.1), i.e. in the form 

(4.2), since this is more convenient from the computational point of view. 
Suppose now that z0 is an equilibrium position of system (1.1)-(1.4). We consider system (1.1)-( 1.4) 

in the set of the level of integrals of the momentum (1.8) and the circulation (1.9) 

We have the system 

Mzo ={z: ~G~ =G~(zo), ~l~ =//2(Zo)} 

Mz o =Mz0{z'}, (z)=(a,b,  pta),Pfb);Gl,li,G2,12) 

~={~,h(~;(Zo))}' (4.6) 

(which is strictly Hamiltonian [7]). 
Here h(2; (z0)) is the limitation of the function (4.3) on the level Mzo, and the notation (z0) indicates 

parametric dependence of the function h(~,; (z0)) on the coordinates of the point z0 in the space of the 
set of equilibrium positions considered, corresponding to the equilibrium ellipsoids; the bracket {,}' is 
the limitation of the Poisson bracket {,} in the space C'=(Mzo). 

As will be shown below, for almost each Riemann ellipsoid z0 of the first and second families in a 
certain neighbourhood O(z0) of the point z0 in phase space (Gi, li, P(a),P(b), a, b, i = 1, 2) of system (4.6), 
corresponding to this ellipsoid z0, the solution of the corresponding algebraic system (3.7) with fl = a 
and f2 = b is unique: z = 2, 0. 

Then, taking into account Proposition 2 from Section 3 (and also the fact that for each unstable 
equilibrium position z0 of system (4.6) there is obviously an unstable equilibrium position z0 of system 
(4.2) and conversely, for each unstable equilibrium position z0 of system (4.2) the corresponding 
equilibrium position of system (4.6) z0 is also unstable) we obtain that almost all the unstable equilibrium 
positions of system (1.1)-(1.4) will at the same time also be unstable with respect to the variables 
(a, b). And of course, by virtue of the discussion in Section 2, the corresponding equilibrium ellipsoids 
will certainly be unstable figures of equilibrium in the sense of Lyapunov's definition (1.11). 

The stability with respect to the semi-axes of the ellipsoids of the first family of Riemann ellipsoids. Riemann 
showed [3], that equilibrium ellipsoids only exist in two cases: 

(1) when one of the three pairs (o)1, P), (o)2, q) or (o)3, r) (or (Gi, li), i = 1~ 2, 3) has both zero 
components (without loss of general i ty-  the first: ll = Gl = 0), 

(2) when two of these pairs have zero components (ll = G1 = 0 and/2 = G2 = 0). 
We will consider the first of these families of equilibrium ellipsoids p2. It is formed by the ellipsoids 

Zo = {a = a 0, b = b 0, G l = I l = 0, G 2 = G2o, 12 = 120, G 3 = G30,13 = 130 } (4.7) 

in the specification of which the six parameters are related [3] by four equilibrium equations. 
In the parametric space of the family p2 of ellipsoids (4.7) we will choose (a0, b0) as coordinates [3]. 
Taking into account the form of the function h(2; (z0)) and the Poisson bracket {,}', we see that all points 

which satisfy system (3.7) for dynamical system (4.60 and for fl = a and f2 = b, necessarily satisfy the system 

f a = a  o, b = b  o, pt,,)=p~b)=0 

ha(~';(Zo)) =/9(a) = 0, hb(Z;(Zo) ) =/~(b) = 0 (4.8) 

~(h~(~;(Zo))) = O, ~(h~(~;(Zo)= 0 

Here and henceforth we will use the notation h a = Oh/iga, h b = Oh/Ob 
System (4.8) is equivalent to a system of four algebraic equations 

ha(~';(Zo)) l, = hb(Z;(Zo))l, = 0 (4.9) 
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with four unknowns: G1, l], G2 and/2. Here and henceforth the asterisk denotes that the value of the 
derivative is taken at the point with coordinates a = ao, b = bo and P'(a)a = P(b = 0 ) • 

We will show that for almost all values of z0 the solution of system (4.9) G i = Gio = Gi(zo), l i = li(zo) 
(i = 1, 2) is unique in a certain neighbourhood of the point (Gl(Z0), G2(z0), la(z0), 12(z0)). 

We will write Eqs (4.9) in explicit form, taking into account the explicit form of the function 
h('~'(Zo)) (the two asterisks here and henceforth denote that the corresponding derivatives are taken 
at the point (a, b) = (aobo)) 

..°' 2 °'l'. 
a ( a 2 + c 2 a ( a 2 + c 2 

+~aL.(a].___~_)2)L _2+ a (  4ac ' 
G2 ~aa/(a 2_ -? ,= j l .  ~ = / = + z L #  ~ , = ) l  '~+ 

a ( a2+b  2 2 a 4ab 2 

-G~)~(I~ -It -1~)~ +-~a['(~-'~')2 ,,(1~ -12-l~) +~a(W(a,b))l,,=O (4.10) 

• 2 = ~ l  la~a.+a/ab = 0 (4.11) 

II/3 = B (1, + Ba (2, + Ba (3) = 0 (4.12) 

v ,  = + + B(¢)= o (4.13) 

where 

+ - 2aoco ) R(,) 5 J( ao 2 + bo 2 2aob 0 a~ + c~ G2G3- 12G, ® 
- ,  =~lL(a~_bo=)=GxO2 (a~_b2o) =I,G2 (a~-Co2) 2 (a(~-Co2) 2 

~ a ( b~ + cg I a( 4boco I I , ( a~ + bg 2aobo aaL(bg :co=) 2 2G1 aaL(bg -Co2) 2)1., 11 (ao2-bo2) 2 . .  + . . . . .  C,,=- 

2a°c° j L ~ ( o f  4b°c° )1 a2+c2 1 2 1 3  G213l®l'~al(b2_c2o)2 GI+ (a~ -c~)  2 (ao 2 -Co2) 2 ,, 

+ _a,_b. ~ 21, 

2 2 2 2 ~2 13 =(lo -Io - l l  -12 ) 

(123, aoboco) 

B(b i) = Ba ") la1~-~a1~b (4.14) 

In formula (4.11) the symbol [ a/Oa --', a/3b denotes that an explicit expression for the function ~/2 is obtained 
if, in the expression for the function ~1 (4.10) all partial derivatives with respect to the variable a are 
replaced by derivatives with respect to the variable b. 

We will now consider the Jacobian of the matrix 
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A = O(~q/l'~l/2'~q/3'¥4) (4.15) 
D( GI , II , G2 ,12 ) 

where all the derivatives are taken at the point Gi = Gio, li = lio (i = 1, 2). 
Differentiating the functions ¥1 and ~t2 with respect to the variables G1 and 11, we obtain that the 

derivatives each represent the sum of terms proportional either to G~ or ll, so that 

~9¥i10G ~ Io=a~lli lOli Io=0, i=1 ,2  

The zero subscript denotes that the derivatives are taken at the point (G1, la, G2, 12) = (0, 0, G20, 120). 
Further, the functions ~3 and ~4, written on the left-hand sides of Eqs (4.12) and (4.13), are sums 

of terms of the form q~(ao, bo) SlS2S3, where cp is a certain function and s is G or I. Hence, when 
differentiating the functions ~3 and ~4 with respect to the variables G2 and l 2 we obtain functions which 
are the sums of terms proportional to Sl, i.e. 11 or G1. Hence we have 

aw,/aG2 Io= aw,/at210=0, i=3,4 

The matrixA when lio = Gio = 0 therefore has a partitioned form and its determinant (4,15) will be 
equal to the product of determinants 

(let A = det A~ x det A 2; 
'D(~/I' ¥2) , D(¥3' ¥4) 

Al= ~ o  A2 = D(GI' ll ) o 
(4.16) 

We will first consider the matrix A1. 
Taking the relation ()G3/OG 2 = ---G2/G 3 into account, we obtain 

aW,] [a(a2+c2 )1 )l,+ 2/2a (ac = 2 G 2 1 ~ a [ ( a 2 _ c 2 , 2 ) [ * * - ~ - ~ (  a2+b2  
aa2 Io 

G 3 ~a ~, (a 2 - c 2)2 ,. 

Similarly 

o~2/aG2 Io = a¥~/aG2 la~a~ab 

In exactly the same way 

aw,/a~ io=aw,/aG~ I~,~,, i=2,3 and aw2/al~ io=aw,/al~ la,~-.,a,~ 

Hence the elements of the matrix considered are 

chlh] = 2G2o ~Jl ~V2 = 2G2o ~Ji 
~G2 Io t)a ' ~G 2 o ~b 

~v2l =2/~° OVl -- 2/2o ~'t2 a J2 
~l 2 a a '  ~l 2 o ~b 

(4.17) 

where 

JJ = JI a,b, l~  _ + - c 2 )  2 _ b2) 2 G20' G30 =[(a2-c2) 2 (a2_b2) z Gzo (a 2 G30 (a 2-  .,' 

J2 = Y~ lai,-,tW=,,2) 
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det A 1 = 4G2o12o det D(J 1, J2) / D(a, b) I** (4.18) 

We note now that the functions J1 and J2 are identical [3] with the left-hand sides of the first two 
equilibrium equations. From these equations, for any 12o/G2o and 13o[G3o, the parameters a0 and b0 of 
the Riemann ellipsoid are uniquely defined [3] for the given values of the parameters 12o/G2o and 
13o/G30, which are implicit functions of ao(12o/G2o,/30/G3o), bo(12o/G2o, 13o/G30). Hence 

det D(J l, d2)/D(a, b) 1..40 (4.19) 

which can, of course, also be obtained by direct calculation. 
We will now consider the matrixA 2 from formula (4.16). 
Starting from the third equation of (4.9) and the form of the function h($; (z0)), we have 

d Oh d a~K 
+ - 

=d¥,(G,.G2.1,.12)=(~-~{ G,l**+(~-~2 G2]**+(-~i,l**+(-~i21** (4.20, 

where ~K is the function (4.4), while 

5 [( a 2 +b 2 + (a2-bl)  ( l ~ - l m l - l ~ ) ~ 2 -  
6, = ~-/t(,;_b:~ ), ( c g - c ? - G ~ #  

I 

(~--~-)2 G2 + (a 2 _c2)2/2 (;o2 -G~ -(;22) ~ (123, abe) (4.21) 

Differentiating the function ~3 (4.20), taking formulae (4.21) into account, we have 

a¥3 =rO~l/, ~(a(~,.:,~ +(a~llt, ya_~_/~ (4.22) 
aC, o t, aa, ~ a(:;,, )1o t a~ ),,at, )1o 

Relation (4.22) follows from the fact that 

J i l0=J i l~=0,  i=1,2, s=G,! 

since z0 = {a = ao, b = b0, G1 = ll = 0, G20, 12o} is the equilibrium position of system (4.6) and 

as a consequence of the form of the function ~1 (4.10) and ~2 (4.11). 
We similarly have 

Further, in exactly the same way 

(4.24) 
at, o Lt a6~ ~ at, ) t, at:2 ~at, )Jlo 
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From relations (4.22)-(4.24) we immediately obtain that 

[D(w3,V4) / D(Gl,ll)] 10 = [D(wI,W2)/D(G2,/2)] 10 B (4.25) 

where B = [[~ijl[ is a 2 x 2 matrix, whose elements have the form 

5 ( 4 2aobo ] 
1311 = M'~,'(~o 2 --"~02) 2 G3° (a~ -b02) 2 G30 (ao 2 -b02) 2 130 ) 

5 2boc 0 
[~12 = ~ "  ( b g -  c2) 2 •30, [~22 = [~11 113o<--~G3o, 1~21 = 912 [13ot-~G30 (4.26) 

The condition det B = 0, taking expressions (4.26) into account, is the quadratic equations 

xZ[(2aobo(ag- b2)-2((b 2 +c2)(b g -cg) -2 -(ag +bg)(a~)- b~)-z))]+ x[4b2c2(b 2 -cg) -4- 

2 2  2 2-4  -4aobd(a o - b  o) -((bg +cg)(bg-cg) -2- (ag  +bg)(ag-bg)-2)z)]+ 

+2aobo(a~ -bg)-2((bg +C2o)(b~ -c~)  -2 -(a~ + b2)(a2 -b2)-2)  = O (4.27) 

inx = G30/130. However, it follows from the equilibrium equations [3] that the quantity G3o/13o satisfies 
another quadratic equation, and it is easy to show that, for almost all a0 and b0 neither this equation 
nor Eq. (4.27) have common roots. 

This indicates that, for almost all values of (a0, b0) the determinant of the matrix A is non-zero. Hence, 
taking expression (4.25) and inequality (4.19) into account, we obtain 

detA 2 ~ 0 (4.28) 

As a result we have, from relations (4.16), (4.18), (4.19) and (4.28), that detA ¢ 0 for almost all values 
of a0 and b0. 

Hence, for almost all ellipsoids of the first family (4.7) the solution G1 = ll = 0, G2 = G20, 12 = 120 
of algebraic system (4.9) is unique in a certain neighbourhood of the point (0, 0, G20,/20). 

Consequently, almost all the unstable Riemann ellipsoids of the first family are at the s~ime time 
unstable with respect to the variables a and b. In other words, almost all the Riemann ellipsoids of the 
first family with semi-axes (a0, b0), belonging to the region U in parameter space P~{ao, b0}, defined in 
[7], are unstable in the sense of Lyapunov's definition of the stability of the form of equilibrium in the 
class of perturbations which satisfy Dirichlet's assumptions. And of course, these ellipsoids are unstable 
figures of equilibrium of the rotating liquid in the sense of the definition given by Lyapunov in [1]. 

The stability with respect to the semi-axes o f  the ellipsoids of  the second family of  Riemann ellipsoids. 
We will now consider the stability of the equilibrium ellipsoids belonging to the second of the above- 
mentioned families of Riemann ellipsoids [3, 7] 

Zo ={a=ao,b=bo,p(a)  = p(b) =O, ll =12 =Gl =G2 =O, (4.29) 

G3 = f~(C,0 + fG20)~, 13 = _ 2M, 2M aoboff~} 

f >! 1, a o >~ c o = 11(aob 0), b o > c o = 1 I(aob o) 

The four parameters (ao, b0, f, f2), occurring in the specification of the ellipsoids (4.29), are related 
[3, 4] by two equilibrium equations. 

In the case of ellipsoids (4.29) system (4.6) on the level of the integrals of the momentum (1.8) and 
circulation (1.9) of system (1.1)-(1.4) 

z = {~, h(~;(z0)) } (4.30) 
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has the invariant set [7]. 

N={~ :G I = l I = G 2 = l 2 = GIo =Iio =12o = G2o =0} 

The dynamical system defined in this way by system (4.13) on the set N is a Hamiltonian system with 
phase space N { (a, b, P(a), P(b)}. The conditions for a certain trajectory of this system to be in the plane 
a = a0, b = b0 have the form a = ao, b = bo, P(a) = P(b) = 0, and hence such a trajectory, that differs 
from the equilibrium position, does not exist. Consequently, taking Proposition 2 of Section 3 into 
account, we obtain that any Riemann ellipsoid of the second family, that is unstable (which is essential 
here) in the class of perturbations which satisfy the following conditions at the initial instant 

Gi(z(t  = 0)) = Gio, l i(z(t  = 0))  = lio; z(t = O) ~ N 

is unstable with respect to the variables a and b. 
However, it was shown in [7] that the set of all unstable ellipsoids (4.29) is exhausted by the fact that 

they are unstable in the class of perturbations belonging to the set N. Hence, we have that all equilibrium 
positions of system (1.1)-(1.4) of the ellipsoid (4.29) that are Lyapunov-unstable are simultaneously 
also unstable (in Lyapunov's sense) with respect to the variables a and b. 

Consequently, all Riemann ellipsoids of the second family (4.29) with semi-axes which satisfy the 
opposite condition to that of (3.4.10) from [7] (apart, perhaps, from bifurcation ellipsoids), are unstable 
forms of equilibrium in the sense of the definition given by Lyapunov [1]. 

Hence, we obtain that an analysis of the conditional stability has enabled us to answer the question 
of the nature of the stability of Riemann ellipsoids, understood in accordance with the general Lyapunov 
formulation. 

The stability of equilibrium ellipsoids in the sense of definition (1.11) given by Lyapunov [1], with 
the exception of special cases of Maclaurin and Jacobi ellipsoids, which were investigated by Lyapunov 
himself, have not previously been considered in the literature. 
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